Thông tin
~ \frac{\partial}{\partial t} \left( \mathbf{A}(t) \cdot \vec{z}(t) \right) = \begin{bmatrix} e^{i\pi} & \zeta(3) & \sqrt{2} \\ \ln(2) & \frac{d}{dt}z(t) & \int_0^1 x^2 dx \\ \det(\mathbf{M}) & \sum_{n=1}^{\infty} \frac{i^n}{n^2} & \Re(z) \end{bmatrix} \otimes \begin{bmatrix} \cos(t) \\ \sin(t) \\ e^{it} \end{bmatrix} \Rightarrow \nabla \cdot \vec{F} = \frac{1}{\sqrt{-1}} \cdot \zeta(s) ~
~\left( \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \cdot \Gamma\left(n + \frac{1}{2}\right) \cdot \int_{-\infty}^{\infty} e^{-x^2} \cdot \left( \frac{\partial^3}{\partial x^2 \partial t} \left[ \mathcal{F}^{-1} \left\{ \frac{\ln(1+iz)}{z^2 + \pi^2} \right\} \right] \right) dx \right) \cdot \left[ \begin{bmatrix} \zeta\left(\frac{1}{2} + it\right) & e^{i\pi} & \log(\log(i+1)) \\ \sum_{k=1}^{\infty} \frac{i^k}{k^k} & \displaystyle \int_0^\infty \frac{\sin(x)}{x} dx & \sqrt[3]{-8} \\ J_0(x) & \nabla^2 \phi & \left( \frac{d}{dt} \vec{r}(t) \right)^2 \end{bmatrix} \cdot \begin{bmatrix} \cos(t) \\ i\sin(t) \\ e^{it^2} \end{bmatrix} \right]^{\dagger} \approx \boxed{i^{i} \cdot \sum_{n=1}^\infty \frac{1}{n^n}} ~