Submit solution
Points:
0.20 (partial)
Time limit:
2.0s
Memory limit:
1G
Input:
stdin
Output:
stdout
Suggester:
Problem source:
Problem type
Allowed languages
C, C++, Go, Java, Kotlin, Pascal, PyPy, Python, Rust, Scratch
Có ~N~ hòn đá, được đánh số từ ~1~ đến ~N~. Với mỗi chỉ số ~i~ ~(1 \le i \le N)~, độ cao của hòn đá thứ ~i~ là ~h_{i}~
Ban đầu, có một chú ếch đang ngồi ở hòn đá thứ nhất và chú sẽ thực hiện liên tục một loạt các hành động sau:
- Nếu chú đang ngồi ở hòn đá ~i~ chú có thể nhảy đến các hòn đá thứ ~i+1~, ~i+2~ ~...~ ~i + K~. Chú sẽ mất phí khi nhảy là ~|h_{i} - h_{j}|~ với ~j~ là hòn đá mà chú ếch nhảy đến.
Bạn hãy giúp chú ếch tìm chi phí tối thiểu để nhảy từ hòn đá thứ nhất đến hòn đá thứ ~N~ nhé.
Input
- Dòng đầu tiên của dữ liệu vào chứa hai số nguyên dương ~N~ và ~K~ ~(2 \le N \le 10^{5}, 1 \le K \le 100)~, lần lượt là số lượng hòn đá và giới hạn nhảy của ếch.
- Dòng thứ hai gồm ~N~ số nguyên ~h_{i}~ ~(1 \le i \le N, 1 \le h_{i} \le 10^{4})~, là độ cao của hòn đá thứ ~i~.
Output
- Gồm một số nguyên, là chi phí ít nhất để nhảy từ hòn đá thứ nhất đến hòn đá thứ ~N~.
Sample 1
Input
5 3
10 30 40 50 20
Output
30
Giải thích
Một đường đi tối ưu là: ~1 \rightarrow 2 \rightarrow 5~. Chi phí sẽ là ~|10 - 30| + |30 - 20| = 30~.
Sample 2
Input
3 1
10 20 10
Output
20
Giải thích
Một đường đi tối ưu là: ~1 \rightarrow 2 \rightarrow 3~. Chi phí sẽ là ~|10 - 20| + |20 - 10| = 20~.
Sample 3
Input
2 100
10 10
Output
0
Giải thích
Một đường đi tối ưu là: ~1 \rightarrow 2~. Chi phí sẽ là ~|10 - 10|= 0~.
Sample 4
Input
10 4
40 10 20 70 80 10 20 70 80 60
Output
40
Giải thích
Một đường đi tối ưu là: ~1 \rightarrow 4 \rightarrow 8 \rightarrow 10~. Chi phí sẽ là ~|40−70|+|70−70|+|70−60|=40~.
Comments
This comment is hidden due to too much negative feedback. Show it anyway.
.
ok
sao lại là 1e9 mới ac v mn
dp[i] có thể cộng dồn lên đến gần 1e9 thì để khỏi tạo 1e9 tính dp[i] = min(dp[i], giatri) cho de.
This comment is hidden due to too much negative feedback. Show it anyway.
cho e hỏi tại sao đặt min 1e5 lại sai mà 1e9 lại đúng ạ. Với h[i] <= 1e4 mà.