CyberFFT

1s

Misdeed is thinking of jumping. Jumping down the stairs.

His staircase has n (n \leq 10¹⁸) steps, and he's starting at step n. He's thinking of jumping k (1 \leq k \leq 60) times in total, each time he can jump an unlimited amount of steps or none at all, as long as he doesn't reach past the end of the staircase – as in, he does not land lower than step 0. Count for Misdeed how many ways can he jump successfully. *Thanks*.

That's the problem statement, at first. However, Misdeed is ugly and prickly.

Call the sequence of jumps a_1, a_2, \ldots, a_k . Now, on turn i, Misdeed will jump $a_i * i$ steps, instead. Thus, $a_1 * 1 + a_2 * 2 + \ldots + a_k * k \le n$. Plus, now, $(a_1 \& a_2 \& a_3 \& \ldots \& a_k) = x \ (x \le 10^{18})$; or else, Misdeed would slip and crack his skull on the edge of a step.

And die.

Count for Misdeed how many jump sequence fits his demands so that he can survive this. Thanks.

INPUT

Three numbers n, k, x (n, $x \le 10^{18}$, $1 \le k \le 60$), describing the number of steps on Misdeed's staircase, the number of jumps, and the AND condition of his jumps.

OUTPUT

The number of jumping sequences that fits Misdeed's demand modulo $10^9 + 7$. Thanks.

Sample Input	Sample Output
11 3 1	4

EXPLANATION

The sequences are: [1, 1, 1], [3, 1, 1], [1, 3, 1], [5, 1, 1]