Greatest Pair
 Problem ID: greatestpair

You are given a tree with n vertices. Each edge has a weight, and each vertex has a label. We denote the label of vertex i as $\operatorname{label}(i)$.

A simple path from vertex s to vertex t is defined as an ordered sequence of vertices $v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$, where $v_{0}=s, v_{k}=t$, and all v_{i} are unique. For each valid index i, v_{i} and v_{i+1} are connected directly by an edge. Note that there exists a simple path between every pair of vertices in a tree.

We define:

- $\operatorname{dist}(u, v)$ as the sum of the weight of all edges on the simple path from u to v.
- $\operatorname{greatness}(u, v)=\operatorname{dist}(u, v) \cdot \operatorname{gcd}(\operatorname{label}(u), \operatorname{label}(v))$.

Please find the two different vertices u and v with maximum $\operatorname{greatness}(u, v)$.

Input

The input contains multiple test cases, each test case is presented as below:

- The first line contains a single integer $n\left(2 \leq n \leq 10^{5}\right)$. The sum of n among all test cases does not exceed 10^{5}.
- The second line contains n integers, the i-th integer is $\operatorname{label}(i)\left(1 \leq \operatorname{label}(i) \leq 5 \cdot 10^{5}\right)$.
- In the next $n-1$ lines, each line contains three integers u, v and $w\left(1 \leq u, v \leq n, 1 \leq w \leq 10^{6}\right)$ describing an edge of weight w connecting two vertices u and v.

The input ends with a line containing a single 0 which is not a test case.

Output

For each test case, print a single line containing the maximum value of greatness (u, v).
Sample Input 1

Sample Output 1

2		100
10	10	
1	2	10
0		

