Problem A A Classic Problem

Time limit: 10 seconds Memory limit: 1024 megabytes

Problem Description

Classic problems in competitive programming are problems frequently appearing in programming contests. This problem is also a very classic one in the field of computational geometry. It is about to answer which points are covered by a given simple polygon.

To state the problem precisely, we first give the definition of a polygon. A polygon of n edges is described by n straight line segments e_1, e_2, \ldots, e_n connected to form a closed chain. That is, there exists a sequence of vertices $v_1 = (x_1, y_1), v_2 = (x_2, y_2), \ldots, v_n = (x_n, y_n)$ such that $e_n = \overline{v_n v_1}$ and $e_i = \overline{v_i v_{i+1}}$ for $1 \le i < n$. Note that we can define a polygon with a sequence of vertices mentioned above.

A simple polygon is a polygon that does not intersect itself. That is, any two line segments may only meet each other on their endpoints. Therefore, a simple polygon encloses a region call its interior. A point p is covered by a simple polygon P if and only if p lies on some edge of P or the interior of P.

In this problem, you are given a simple polygon of n edges defined by a sequence of vertices and m points on 2D-plane. Please write a program to determine which points are covered by the givin simple polygon.

Input Format

The first line contains two space-separated positive integers n and m. n is the number of edges of the simple polygon, and m is the number of points. Then n + m lines follow. For $1 \le i \le n$, the (i+1)-th line of the input contains two space-separated integers x_i and y_i where $v_i = (x_i, y_i)$ is the *i*-th item of the sequence describing the simple polygon. For $1 \le j \le m$, the (1 + n + j)-th line of the input contains two space-separated integers X_j and Y_j where $p_j = (X_j, Y_j)$ is the *j*-th point to be tested whether it is covered by the simple polygon.

Output Format

Output *m* lines. On the *j*-th line of the output, print YES if p_j is covered by the simple polygon defined by the sequence v_1, v_2, \ldots, v_n . Otherwise, print NO.

Technical Specification

- $3 \le n \le 10^5$
- $1 \le m \le 10^5$
- The sequence v_1, v_2, \ldots, v_n always defines a simple polygon.
- $x_i, y_i \in [-10^9, 10^9]$ for $1 \le i \le n$
- $X_j, Y_j \in [-10^9, 10^9]$ for $1 \le j \le m$

Sample Input 1	Sample Output 1
3 3	YES
0 0	NO
5 5	YES
5 0	
1 1	
1 2	
2 1	

Sample Input 2	Sample Output 2
4 4	NO
0 0	YES
1 1	YES
2 0	YES
1 5	
1 0	
1 1	
1 2	
1 3	