EXPRESSIONS

1s | 512MB

Given a list of n distinct number, Jack want to create expressions using only the numbers in the list with *addition, multiplication* and *parenthesis*. Jack defines the relationship "~" between two expressions as follows:

- $a \sim (a)$
- $a + b \sim b + a$ and $a \times b \sim b \times a$
- $a + (b+c) \sim (a+b) + c \sim a+b+c$ and $a \times (b \times c) \sim (a \times b) \times c \sim a \times b \times c$
- 1× a ~ a
- $\bullet \qquad \text{If } a \sim b \text{ and } b \sim c \text{ then } a \sim c$

Two expressions a and b are considered the same if and only if $a \sim b$.

Find the number of **distinct expressions** that evaluated to m.

INPUT

First line of input is T (T \geq 1) the number of tests. Each test will have the following format

The first line of each test is two number n, m $(1 \le n \le m \le 5 \times 10^5)$

The second line of each test is n number $1 \le a_1 < a_2 < \ldots < a_n \le m$, the numbers on the list

It is guaranteed that the sum of m over all test cases does not exceed 5×10^5

OUTPUT

For each test output the answer on a single line, since the answer can be big, print it in modulo 998244353

Sample Input	Sample Output
5	1
11	0
1	10
1 99	10
2	299891645
5 5	
12345	
1 10	
1	
8 5000	
2 3 5 7 11 13 17 19	

In the third test, 5 can be represented as

1 + 1 + 1 + 1 + 1

1+1+1+2

1 + 2 + 2

1+1+3

1 + 4

1 + 2.2

1 + (1+1).2

2 + 3

5

In the forth test, 10 can be represented as

$$1+1+1+1+1+1+1+1+1+1$$

$$(1+1).(1+1+1+1+1)$$