Abstract Painting
 Problem ID: abstractpainting

Gon is currently training to become a modern artist.
Everyday, Gon practices his painting skill on a rectangular canvas, divided into $R \cdot C$ unit squares, with R rows and C columns. Gon wants to paint all the edges of all unit squares.

Contrary to popular belief, creating a good modern painting is not an easy task. A good modern painting should use a limited number of colors, simple yet elegant. Thus, when creating his painting, Gon strictly adheres to the following rules:

- Only 3 colors are used: Red, Green and Blue.
- All edges of all unit squares must be painted. Each edge must be painted with exactly one color.

- For each unit square, exactly 2 colors must be used to paint its 4 edges. Furthermore, each color must be used to paint exactly 2 edges.

In the following figure:

- The painting on the left is a good painting.
- The painting on the right is not a good painting, because the top-left unit square has 3 blue edges.

Now Gon is wondering, how many different good paintings are there? Two paintings, both with R rows and C columns, are considered different, if there exists one edge painted with different colors in the two paintings. Please help Gon!

Input

The first line contains exactly one integer T - the number of test cases $(1 \leq T \leq 5)$.
T lines follow, each line contains exactly two integers R and $C(1 \leq R \leq 14,1 \leq C \leq 2000)$.

Output

Output exactly T lines, each line contains a single integer - the number of different good paintings, modulo $10^{9}+7$.

Sample Input 1	Sample Output $\mathbf{1}$	
3		18
1	1	108
1	2	108
2	1	

